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ABSTRACT

A formula for the contour of compensated microstrip
steps and open ends is derived. Suitable for automated
mask design, the expression generates an exponential
transition minimizing the parasitic shunt capacitance
and series inductance of microstrip step disconti-
nuities.

INTRODUCTION

The parasitic reactances associated with microstrip
steps and open ends have been investigated by many
researchers. In the design of microstrip circuits,
these parasitic elements must be accounted for. While
the end effect is easily compensated by foreshortening,
the presence of step parasitics complicates the design
procedure, particularly in the case of broadband com-~
ponents.

The purpose of this paper is to present an expres-—
sion which enables the designer to minimize if not eli-
minate the step parasitics at the manufacturing level
so that they need not be considered at the design
stage.

The approach follows the procedure described by
Malherbe and Steyn [1] and Larsson [2] for the compen~—
sation of stripline steps: instead of changing sud-
denly in width, the wider strip is narrowed gradually
in such a way that its characteristic impedance remains
constant right up to the junction.

The open end may be considered as the limiting case
of a step from finite to zero strip width. Both sym-
metrical and non-symmetrical steps will be treated in
this paper.

Only recently, a geometrically very simple method
of microstrip step compensation has been proposed by
Chadha and Gupta [3] who chamfer the corners of symme-
trical steps at an angle of 60°. However, while this
geometry seems to be valid only for a limited range of
permittivities and impedance ratios, the approach
chosen in the present paper is apprepriate for any
dielectric and any impedance ratio because it is based
on accurate expressions for the characteristic impe-
dance of microstrip by Hammerstad and Jensen [4].

DERIVATION OF THE CONTOUR FORMULA

Symmetrical Steps

Figure 1 shows a compensated symmetrical microstrip
discontinuity. Compare the two segments ABCD and A'B'
C'D' which are both Ax long. The contour y(x) must be
determined in such a way that the total capacity of
both segments is the same for all x > 0. For this pur-
pose, the total capacity C_of each segment is arbi-
trarily subdivided into twé parts, namely the parallel

plate capacity Cp and the fringe capacity Cf which is
proportional to the length of the arc AB. Thus, for

all x > 0:
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Fig. 1 Compensated symmetrical microstrip step dis-
continuity. The substrate thickness h is the
same for all x and y.
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Ct = C;, the total capacity of the segments, is rel-

ated to the characteristic impedance and effective
dielectric constant of a uniform strip of width W, as
follows:
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where CO is the free-space velocity of light. ge(Wz)

and ZO(WZ) are the effective dielectric constant and
the characteristic impedance of a microstrip line of
width v, and height h. The values of the parallel

plate capacities are:

(i) for the segment A'B'C'D':
g

v
Cp = €48V, Ax/h (3a)

(ii) for the segment ABCD:

Cp = (eoer/h)(ZyAxi-AxAy) (3b)

The values for the fringe capacities are:
(i) for the segment A'B'C'D':
1 _ ot o pt
Cf = Ct Cp (4a)
(ii) for the segment ABCD:

c, =/ (6% + (ayp) 2 Ceo (4b)

where CfO is the fringe capacity per unit length of a
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uniform microstrip line of width 2y:
e (2y)
£0 cOZO(2y)
In the limit where Ax - dx and Ay +dy, the equations
(1) to (5) yield after some manipulation the following

differential equation for the contour of the symme-
trical microstrip step:

c 2y/h (5)
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where
n = 376.73 @
[
h = substrate thickness (distance between
strip and ground plane)
€. = relative dielectric constant of subs-

trate

effective dielectric constant of a uni-
form microstrip line of width w, and 2y
respectively on a substrate with per-
mittivity €

e (7)) 5, (2y)=

ZOl(w2%201(2y): characteristic impedance of an air-

filled microstrip line of width W, and
2y respectively.
Accurate analytical expressions for e, and 2y have been

published. by Hammerstad and Jensen [4] and are repeated
below for convenience.

The expression for the effective dielectric constant of
microstrip is:

e +1 e -1
e (re) = ot -E (1410/uw) 2 (WP (EY) )
where
1, ut(u/52)? 1 u |3
a(u) = l+z—9—£n + 35 7£VL [1+ 18 1) ] (8)
ut+ 0.432 . :
and e -0.9

0.053

b(e) = 0.564 (Fgm— (9)
r
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The characteristic impedance of air-filled microstrip
is:

n.
Z @ = —otn E2 /14 B2 (10)
where
£u) = 6 +(2m-6)exp [-CL8660-7528) an

In these expressions, u is the width/height ratio
(u = w/h), and for the purpose of evaluating (6) w
becomes Wy and 2y respectively. i, in (10) is the impe-

dance of free space (n0 = 376.739).

It is also possible to include dispersion of €, in
(6), but this has only a negligeably small effect on
dy/dx.

Non-Symmetrical Steps

A non-symmetrical compensated microstrip step is
shown in Fig. 2.
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Fig. 2 Compensated non-symmetrical microstrip step
discontinuity. The substrate thickness h is
the same for all x and y

The parallel plate and fringe capacities of the seg-
ment A'B'C'D' are the same as for the symmetrical case
and are given by (3a) and (4a) above.

For the segment ABCD we have:

Cp = (ecer/h)(yAxi-AxAy/Z) (12)
and \
/ 2,, 2

Cp = (Ax+/(Ax)"+{4y)" ) CfO/Z 13)

where C is the fringe capacity/unit length of a uni-

fo
form microstrip line of width y:

/Ee(y)

C =
fo coZo(y)

- aoary/h (14)
In the limit where Ax -+ dx and Ay - dy, the equations
(1), (2) and (12) to (14) yield after some manipulation
the following differential equation for the contour of
the non-symmetrical microstrip step:
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where all quantities are interpreted as in (6) and in
accordance with Fig. 2. €o and Z01 are given by (7)

and (10) respectively.

GENERATION OF THE CONTOUR

It is both difficult and unnecessary to integrate
(6) and (15) analytically. Instead, the contour can
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Fig. 3 Contour of compensated symmetrical microstrip
step obtained with different step sizes dx.

(wl=1.25 mm,w2=6 mm, h=0.508 mm, er:2.22)



be generated in small successive steps of dx, starting
at x = 0 where y corresponds to the width of the narrow
strip. For each small step dx, (6) and (15) yield the
corresponding increment dy until y reaches the width

of the wider strip. While 10 steps approximate the
contour quite well, a polygon comsisting of 50 steps is
virtually indistinguishable from the accurate contour
(see Fig. 3)

MEASUREMENTS

In order to verify the validity of the contour
formulas, the resonant frequencies of two strips of
equal length % were compared. One of them had square-
corners, while the other was rounded off to compensate
the end effect (see Fig. 4). Both strips were located
on the same substrate sufficiently far apart, and very
loosely coupled in order to minimize errors due to var-
iations in permittivity and to circuit loading. Reso-
nance frequencies were measured in the transmission
mode.
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Fig. 4 Compensated and uncompensated resonant micro-
strips for the evaluation of the contour
formula

Table 1 compares the results obtained for 10 cm
long strips on RT/durocid (€r= 2.22) and on Epsilam 10
(Er = 9.8).

resonate within 0.27 of the theoretical value, indi-
cating that the end effect has effectively been reduced

It is clearly seen that the rounded strips

DISCUSSION AND CONCLUSION

The parasitic reactances of step discontinuities in
microstrip can be virtually eliminated by rounding off
the corners of the wide strip. The contour is deter-
mined such that the characteristic impedance of thewide
strip is constant right to the junction. This condi-
tion yields a differential contour equation which con-
tains expressions for characteristic impedance and ef-
fective dielectric constant of microstrip. Its stepwise
integration leads to a polygoen approximation of the
contour. The integration can be programmed on a pocket
calculator or performed during automatic generation of
the mask. This technique greatly reduces the complex-
ity of circuit design. Its effectiveness has been de-
monstrated by measurements on microstrip resonators.
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. Resonant Frequencies (MHz)
MZZE;:ii and Theoretical Measured Measured
y (no_end effect) | (Compensated) | (Non—Compensated)
RT/Duroid, e, = 2.22 1052.45 1053.00 1044.81
= 0.508 mm 2104.53 2106.02 2085.89
w=5mm, £ = 10 cm 3155.92 3152.68 3131.49
Epsilam 10, €. = 9.8 517.59 518.7 510.3
h = 0.635 mm 1034.56 1035.8 1023.0
= 6.4 mm, £ = 10 cm 1550.32 1552.4 1535.1

Table 1 Comparison of theoretical and measured resonant frequencies
of microstrip resonators with and without end compensation
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